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A
novel coronavirus, severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), emerged from Wuhan,

China, in December 2019, resulting in a severe outbreak

of pneumonia1; SARS-CoV-2 causes a clinical syndrome, coronavi-

rus disease 2019 (COVID-19), and its pulmonary manifestations

have been well described. There is growing evidence of

neurological complications and disease in patients with

COVID-19. Two similar human coronaviruses (CoV), Middle

East respiratory syndrome (MERS-CoV) and severe acute

respiratory syndrome (SARS-CoV-1), have also been associated

with neurological disease in rare cases. This raises the questions

of whether SARS-CoV-2 is neurotropic and whether it contributes

to postinfectious neurologic complications. A handful of

case reports have described neurological complications in

patients with COVID-19.1-4 However, it remains unknown to

what extent SARS-CoV-2 damages the central nervous system

(CNS) or if neurological symptoms are attributable to secondary

mechanisms.

Search Strategy and Selection Criteria

References for this review were identified by searches of PubMed

from April to May 2020 for articles published between 1969 and

April 2020, as well as references from relevant articles. The search

terms COVID-19, SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV-OC43,

neurotropism,neuroinvasion, andcoronaviruswereused.Therewere

no language restrictions. The final list of included articles was gen-

eratedon thebasis of relevance to the topics covered in this review.

Neurotropic Coronaviruses

Coronaviruses (CoV) are large, enveloped, positive-sense RNA vi-

rusesdivided into3genera: alphacoronavirus,betacoronavirus, and

gammacoronavirus.5 These viruses infect humans and numerous

animal species, generally causing upper or lower respiratory tract,

IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in

December 2019, causing human coronavirus disease 2019 (COVID-19), which has now spread

into a worldwide pandemic. The pulmonary manifestations of COVID-19 have been well

described in the literature. Two similar human coronaviruses that cause Middle East

respiratory syndrome (MERS-CoV) and severe acute respiratory syndrome (SARS-CoV-1) are

known to cause disease in the central and peripheral nervous systems. Emerging evidence

suggests COVID-19 has neurologic consequences as well.

OBSERVATIONS This review serves to summarize available information regarding

coronaviruses in the nervous system, identify the potential tissue targets and routes of entry

of SARS-CoV-2 into the central nervous system, and describe the range of clinical neurological

complications that have been reported thus far in COVID-19 and their potential pathogenesis.

Viral neuroinvasionmay be achieved by several routes, including transsynaptic transfer across

infected neurons, entry via the olfactory nerve, infection of vascular endothelium, or

leukocyte migration across the blood-brain barrier. Themost common neurologic complaints

in COVID-19 are anosmia, ageusia, and headache, but other diseases, such as stroke,

impairment of consciousness, seizure, and encephalopathy, have also been reported.

CONCLUSIONS AND RELEVANCE Recognition and understanding of the range of neurological

disorders associated with COVID-19may lead to improved clinical outcomes and better

treatment algorithms. Further neuropathological studies will be crucial to understanding

the pathogenesis of the disease in the central nervous system, and longitudinal neurologic

and cognitive assessment of individuals after recovery from COVID-19 will be crucial to

understand the natural history of COVID-19 in the central nervous system andmonitor for

any long-term neurologic sequelae.
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gastrointestinal, neurological, orhepaticdisease.6,7Currently, there

are 7 CoV that can infect humans, including human coronavirus

(HCoV)–229E, HCoV-NL63, HCoV-HKU1, HCoV-OC43, MERS-CoV,

SARS-CoV-1, and SARS-CoV-2.8 Betacoronaviruses SARS-CoV-2,

SARS-CoV-1, and MERS-CoV are associated with severe disease in

humans.1,3,8 Although HCoV are typically associated with respira-

tory tractdisease,3HCoVhavebeenshownto infectneurons:HCoV-

229E, HCoV-OC43, and SARS-CoV-1.

HCoV-OC43

TheneuroinvasivepotentialofHCoV-OC43hasbeenparticularlywell

studied. It has been shown to thrive in neural cell in vitro cultures.9

Oligodendrocytes, astrocytes, microglia, and neurons are suscep-

tible to acute infection with HCoV-OC43, and all except microglia

support persistent infection.10 In murine models, HCoV-OC43 can

invade the CNS intranasally, which is followed by a rapid spread

throughout theCNS.Neuronal damage appears to be causedbydi-

rect, virus-mediated, and not immune-mediated injury.11 The CNS

damage causes a range of neurological disorders inmice, including

encephalitis and transient flaccid paralysis.12

Inhumans,historyof infectionwithHCoV-OC43isassociatedwith

multiple sclerosis (MS), based on the presence of viral RNA in au-

topsybrain tissueofdonorswhodiedwithMS.13,14 In 1 study,15HCoV-

OC43RNAwas alsodetected in the cerebrospinal fluid (CSF) in 10of

20 living patients with MS. Although the mechanism of potential

demyelinationduringHCoV-OC43 infection is unknown, thismaybe

because of an adaptive immune response against HCoV-OC43 anti-

gens that cross-react withmyelin antigens. Indeed, peripheral T-cell

clones in patients with MS have been shown to cross-react to both

HCoV-OC43andmyelin antigens.16 In addition todemyelinatingdis-

ease, therehave alsobeenpediatric case reports of childrenwith se-

vere immunosuppression developing encephalitis associated with

HCoV-OC43 infection,with brain biopsies having positive results for

HCoV-OC43 RNA onmetagenomic sequencing.17,18

SARS-CoV-1

During the SARS pandemic of 2002-2003, neurological complica-

tions were reported in a subset of patients.19 A group from Taiwan

reported3casesofaxonal-variantGuillain-Barrésyndrome(GBS)and

5casesof ischemicstroke.20,21Onereport22describedapatientwith

SARSpresentingwithaseizurewithapositiveCSFpolymerasechain

reaction result for SARS-CoV-1, although contamination of the CSF

sample was possible. In addition, SARS-CoV-1 has been reliably de-

tected in brain tissue specimensof autopsydonorswith SARS, spe-

cifically in the cytoplasm of neurons in the cortex and hypothala-

mus, sometimes associated with neuronal edema and nuclear

degeneration.23,24Examinationofautopsy tissue fromapatientwith

encephalitis revealed neuronal necrosis, glial cell hyperplasia, and

infiltration of monocytes and T cells.25 Additionally, virions were

visualized inneuronsonelectronmicroscopy, andSARS-CoV-1 RNA

was isolated fromthespecimen.25 Inmurinemodels, SARS-CoV-1en-

ters the CNS via the olfactory bulb and exhibits rapid transsynaptic

spread.The infectioncauses significantneuronaldamageanddeath

without significant inflammatory infiltration.2

MERS-CoV

The Middle East respiratory syndrome CoV (MERS-CoV) first

emerged in 2012, and since that time, approximately 2494 cases

havebeenreported,witha34.4%casemortality rate.26UnlikeSARS-

CoV-1 and SARS-CoV-2, MERS-CoV binds to the dipeptidyl pepti-

dase4receptoroncells togainentry.Dipeptidylpeptidase4 iswidely

expressed throughout the body on epithelia, vascular endothelia,

and thebrain.27,28Therehavebeenseveral clinical case reports that

suggest MERS-CoV can lead to neurological complications in hu-

mans. Inastudy29of70patients,6(9%)developedseizures,9(13%)

reported headache, and 18 (26%) experienced confusion. A case

series30highlighted3 severe casesofneurological disease inMERS-

CoV, includingsuspectedacutedisseminatingencephalomyelitis,en-

cephalitis, and widespread ischemic infarcts. Another case series4

highlighted neuromuscular disease inMERS-CoV, including 3 cases

of GBS and a case of Bickerstaff encephalitis. However, although

murine models develop CNS infection after intranasal inoculation

with MERS-CoV, this virus has never been detected in the CNS of

humans.28

Mouse Hepatitis Virus

Historically, the neuroinvasive potential of CoV has been illustrated

through studies of themurine coronavirus mouse hepatitis virus. In

mice, this virus induces a spectrum of neurological disease ranging

fromfatalencephalomyelitis todemyelinatingdisorders.Mousehepa-

titis virus enters the CNS through hematogenous spread or intrana-

sal inoculation.31,32 Once in the CNS, the virus is associated with an

influx of immune cells, including CD-8 T cells, natural killer cells, and

neutrophils.Asignificant increase in inflammatorycytokines, includ-

ing interleukin 6 (IL-6), is observed in the CNS of infectedmice.33

SARS-CoV-2

The SARS-CoV-2 virus shares close sequence homology to SARS-

CoV-1. Both viruses use spikeproteins on theviral surface tobind to

the angiotensin-converting enzyme2 (ACE2) receptor onmamma-

lian host cells, then use serine protease transmembrane protease

serine2 (TMPRSS2) toprime the spike.34Thepresenceof theACE2

receptor in tissues determines viral cellular tropism in humans. In

humans, ACE2 is expressed in airway epithelia, kidney cells, small

intestine, lungparenchyma,andvascularendothelia throughout the

body andwidely throughout the CNS (Figure 1). Information about

specific cellular and spatial localization within the human brain is

emerging.Arecent report35 (notyetpeer reviewed) foundthatACE2

is expressed inneurons, astrocytes, andoligodendrocytes. Expres-

sion of ACE2 was also highly concentrated in the substantia nigra,

ventricles, middle temporal gyrus, posterior cingulate cortex, and

olfactory bulb.35 This study35 compared human ACE2 expression

with the mouse brain and demonstrated similar expression pat-

terns. In other murine models, ACE2 expression has been identi-

fied in themotor cortex, cytoplasmof neurons, glial cells, and sym-

pathetic pathways in the brainstem.36,37 In neuronal cell cultures,

ACE2 is expressed both on the surface membrane and in the

cytoplasm.38 Widespread ACE2 expression in the brain raises the

concern that SARS-CoV-2, similarly to SARS-CoV-1, has the poten-

tial to infect neurons and glial cells throughout the CNS.

Potential Mechanisms of Neuroinvasion

Although there are reports of neurological complications in pa-

tients with COVID-19, it is unclear if SARS-CoV-2 is neurotropic in
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humans. Viral neuroinvasion could plausibly be achieved by sev-

eral routes, including transsynaptic transfer across infected neu-

rons (Figure 2), entry via theolfactory nerve (Figure 2), infectionof

vascular endothelium (Figure 3), or leukocytemigration across the

blood-brain barrier (BBB) (Figure 3).

Transsynaptic Spread

There is increasing evidence that human and nonhuman CoV

invade peripheral nerve terminals, spread retrograde along nerve

synapses, and gain access to the CNS (Figure 2).12,39 Transsynaptic

transfer of virus has been demonstrated for several CoV, including

HCoV-OC43,hemagglutinatingencephalomyelitis virus67 (HEV67),

and avian bronchitis virus.12 For example, HEV67 enters the orona-

sal cavity and infects the nasal mucosa, lung epithelium, and small

intestine of suckling piglets and rats. It then infects the peripheral

nerves and spreads retrograde to the dorsal root ganglion, ending

in the medullary neurons.40 A membrane coating–mediated endo-

cytoticorexocytoticpathwayfacilitatesHEV67transferbetweenmo-

tor cortexneurons.40Asimilar, vesicle-mediated secretorypathway

allowsHEV67tospreadbetweenneuronsandsatellite cells.41For in-

tracellular spreadwithin a neuron, fast axonal transport uses axonal

microtubules tomovemolecules retrogradeoranterograde.12,42Her-

pes simplex virus, HIV, and HCoV-OC43 have all been shown to use

retrograde fast axonal transport to infect the cell bodyof neurons.42

During the COVID-19 outbreak, isolated loss of sense of smell

(anosmia) and lossof senseof taste (ageusia)withorwithout respi-

ratory symptomshasbeen reported.43Direct entry along theolfac-

torynerve is another potentialmechanism for SARS-CoV-2entry to

theCNS(Figure2). Inatransgenicmousemodel thatexpressesACE2,

mice inoculatedwith SARS-CoV-1 intranasally showed that virus in-

vadedtheCNSviaa transcribrial route.44,45Thesamehasbeendem-

onstrated in murine MERS-CoV and HCoV-OCR43models after in-

Figure 1. Angiotensin-Converting Enzyme 2 (ACE2) Expression in the Brain
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SARS-CoV-2 binding to a neuronC
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Emerging data suggest that ACE2 receptors are expressed in multiple regions of

the human andmouse brain, including themotor cortex, posterior cingulate

cortex, ventricles, substantia nigra, olfactory bulb, middle temporal gyrus,

ventrolateral medulla, nucleus of tractus solitarius, and dorsal motor nucleus of

the vagus nerve (A) and on several key cell types that make up the central

nervous system, including neurons, microglia, astrocytes, and oligodendrocytes

(B).35-37 C, ACE2 receptors on amedullary neuron binding to the SPIKE protein

on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This figure

was created by an author (L.S.M.) using the website https://app.biorender.com.
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tranasal inoculation.11,28 In fact, chemically ablating the olfactory

neurons protectedmice fromHCoV-OCR43 invasion into the CNS.

It remains unclear whether SARS-CoV-2 can similarly spread to the

CNS via transcribrial route. Emerging reports46,47 (not yet peer re-

viewed) suggest that sustentacular and stem cells in the olfactory

epithelium express ACE2 and are vulnerable to SARS-CoV-2 infec-

tion,whileolfactory sensoryneuronsdonotexpressACE2, suggest-

ing SARS-CoV-2 cannot gain access to nerve cells. These prelimi-

nary findings suggest that damage to the olfactory epithelium

underlies clinical anosmia, rather than neuronal injury. Furthermu-

rine and autopsy studies will likely provide clarification.

Blood-Brain Barrier Spread

There are2possiblemechanisms for SARS-CoV-2 spreadacross the

BBB.TheBBBiscomposedofvascularendothelium,astrocytes,peri-

cytes,andextracellularmatrix.48Vascularendothelial cellsare joined

by tight junctionsand regulate thepermeabilityof theBBB.The first

mechanism is through infection of and transport across vascular

Figure 2. Transsynaptic Viral Spread
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A, Coronavirus (CoV) has been shown

to spread via the transcribrial route

from the olfactory epithelium along

the olfactory nerve to the olfactory

bulb within the central nervous

system. B, CoV has been shown to

spread retrograde via transsynaptic

transfer using an endocytosis or

exocytosis mechanism and a fast

axonal transport (FAT) mechanism of

vesicle transport to move virus along

microtubules back to neuronal cell

bodies. This figure was created by an

author (L.S.M.) using the website

https://app.biorender.com.

Figure 3. Mechanisms of Spread Across the Blood-Brain Barrier
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A, Infected vascular endothelial cells

have been shown to spread severe

acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) to glial

cells in the central nervous system.

B, Known as the Trojan horse

mechanism, infected leukocytes can

cross the blood-brain barrier to infect

the central nervous system. CoV

indicates coronavirus. This figure

was created by an author (L.S.M.)

using the website

https://app.biorender.com.
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endothelial cells (Figure 3). Endothelia throughout the body ex-

press ACE2 and are at risk for infection by SARS-CoV-2. An autopsy

case study demonstrated the presence of SARS-CoV-2 viral par-

ticles incapillaryendotheliaandneuronsofafrontal lobespecimen.49

Neurons were found to have viral particles packaged in dilated

vesicles. Electron microscopic imaging even demonstrated endo-

cytosis or exocytosis of viral particles across endothelial cells.

Arboviruses use a similar active-transportmechanismwithout rep-

lication to enter endothelial cells and cross theBBB into theCNS.50

Once thevirus gains access to vascular andneuronal tissue, it could

begin a cycleof viral buddingand furtherdamagevascular andneu-

ronal tissue as the virus comes into contact with ACE2 on neurons,

glia, and vessels.51

The second mechanism is through infection of leukocytes

that pass through the BBB, termed the Trojan horse mechanism

(Figure 3).52 This mechanism is well described in HIV, in which in-

fected immune cells pass from the blood through the BBB to infect

the CNS.42,53 The SARS-CoV-1 virus has been shown to infect lym-

phocytes, granulocytes, monocyte derivatives, and monocytes,

which all express ACE2.24,54-56 It is likely that SARS-CoV-2 infects

similar cell types. It has been demonstrated that T lymphocytes

allow SARS-CoV-2 infection but do not support viral replication.57

The systemic inflammation that characterizes COVID-19 likely in-

creases the permeability of the BBB, thereby allowing infected

immune cells, cytokines, and possibly virus to pass into the CNS.58

Neurologic Manifestations

Information about neurologic manifestations in patients with

COVID-19 is sparse. Currently, there are a small number of pub-

lished case reports and clinical studies. A systemic study inWuhan,

China, reportedneurologic findings in214patientshospitalizedwith

COVID-19.59 Another systematic study60 in France noted neuro-

logic symptoms in49of 58patients, including confusion, encepha-

lopathy, andcorticospinal tract signsonexamination, aswell as lep-

tomeningealenhancementandperfusionabnormalitiesonmagnetic

resonance imaging (MRI).

The most common neurologic symptoms in COVID-19 are

headache, anosmia, and ageusia. Other neurological findings in-

clude stroke, impairment of consciousness, coma, seizure, and

encephalopathy.

Headache

Headache is one of themost common initial complaints in patients

with COVID-19. In a recent case series,61 headache was a predomi-

nant complaint, along with fever, cough, sore throat, and breath-

lessness. Prevalence varies in different reports but can affect up to

one-third of diagnosed patients.62,63 While headache is a well-

describedmanifestation ofmeningitis, encephalitis, vasculitis, and

intracranial hypertension, less is known about its pathophysiologi-

calconnectionwithCOVID-19.Neuroinflammatorymechanismshave

been invoked in some headache syndromes via cytokines and che-

mokines that trigger nociceptive sensory neurons.64 Release of

cytokines and chemokines by macrophages during various stages

of COVID-19 infectionmay lead to similarmechanisms for pain.65 It

is imperative to screenpatientswhopresentwithheadache for sec-

ondary causes if they have had a change in their headache fre-

quency or severity, develop systemic symptoms such as a fever, or

are refractory to preliminary treatments.

Anosmia and Ageusia

The prevalence of anosmia and ageusia ranges widely in the litera-

ture. In a study of patients hospitalized in Wuhan, the prevalence

of hypogeusia and hyposmia was 5.6% and 5.1%, respectively,59

while 19.4% of patients in Italy had some form of chemosensory

dysfunction.66 Approximately 88.5% and 88.0% of patients

in Germany reported olfactory and gustatory dysfunction,

respectively.67 Of patients without nasal congestion, 79.7% were

hyposmic.67 Anosmia has also been noted in other respiratory

infections, such as influenza.66,68 In COVID-19, anosmia is typically

not accompanied by nasal swelling or rhinitis. Given the reports of

anosmia presenting as an early symptom of COVID-19, dedicated

testing for anosmia may offer the potential for early detection of

COVID-19 infection.

Impaired Consciousness

Impairment of consciousness was reported in 37% of patients

hospitalizedwithCOVID-19 in theMaoetal59 study inWuhan.There

are several possible mechanisms of altered consciousness in pa-

tients with COVID-19, including direct infection and damage of the

parenchyma, toxic-metabolic encephalopathy, seizures, or demy-

elinating disease.

Toxic-Metabolic Encephalopathy

The hallmark of encephalopathy is impaired attention and arousal,

presentingwith confusion, lethargy, delirium, or coma.69Common

risk factors that predispose patients to delirium are advanced age,

underlyingdementiaorcognitive impairment,multiplecomorbiddis-

eases, infection, severemedical illness,poor functionalbaseline, and

malnutrition.70Many metabolic and endocrine derangements put

patients at further risk for encephalopathy, including hyponatre-

mia or hypernatremia, hypocalcemia or hypercalcemia, renal dys-

function, liver dysfunction, and hypoglycemia or hyperglycemia,

among others. Sepsis and the subsequent inflammatory and cyto-

kine storm can also contribute to encephalopathy with IL-6, IL-8,

IL-10, and tumor necrosis factor α being implicated in states

of confusion.71

Patients hospitalized with COVID-19 may exhibit numerous

toxic-metabolic derangements, including cytokine storm, severe

inflammation, sepsis, and renaldysfunction.65SevereCOVID-19dis-

ease ischaracterizedby increased IL-2, IL-6, IL-7,granulocyte–colony-

stimulating factor, interferon-γ inducibleprotein 10,monocyte che-

moattractant protein 1,macrophage inflammatory protein 1–α, and

tumor necrosis factor α.72Cytokine storm likely contributes signifi-

cantly to toxic-metabolicencephalopathy inseverecases, alongwith

the risk factors andmetabolic derangements detailed.

Encephalitis

As discussed, MERS-CoV, SARS-CoV-1, and potentially SARS-CoV-2

can invade the CNS and potential encephalitis is a concern. How-

ever, currently there is no direct evidence of encephalitis second-

ary to SARS-CoV-2. A suspected case of meningoencephalitis73 in a

patient with COVID-19 was reported in Japan. The patient pre-

sented with headache, fever, and seizures. An MRI showed diffu-

sion restriction in the right temporal lobe, hippocampal atrophy,
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and ventriculitis, and SARS-CoV-2 RNA was detected in CSF, but it

was unclear if some of the patient’s reported features could be pre-

sent in the setting of seizure from other causes. A suspected case

of acute necrotizing encephalopathy has also been reported,74

which is typically a peri-infectious immune-mediated syndrome,

rather than direct viral encephalitis. An MRI of the patient’s brain

showed hemorrhagic, rim-enhancing lesions in the bilateral

thalami, medial temporal lobes, and subinsular region.74High levels

of proinflammatory cytokines in the CSF can cause breakdown

and increased permeability of the BBB, which may in turn lead to

viral invasion.74

Seizure

Seizurescanalso leadto impairment inconsciousnessandhavebeen

reported in other CoV infections. Additionally, subclinical seizures

are reported in roughly 10% of patients with critical illness,75 and

patientswith primary seizure disorder are at higher risk of seizures

andstatusepilepticus in thesettingof severe infection.76Atouraca-

demicmedical center, there have been a high proportion of break-

through seizures in patients with epilepsy who have developed

COVID-19.

A recent report of 304 patients diagnosed with COVID-19 only

documented 2 “seizurelike events,”77(p3) with no confirmed cases

of new-onset seizures. The study was limited by lack of clinical

testing (eg, electroencephalography, imaging) and the retrospec-

tive approach.77 A case report of a patient with no history of epi-

lepsy who had multiple apparent tonic-clonic seizures in the set-

ting of COVID-19 may represent an unmasked seizure disorder or

the direct effect of COVID-19 in the CNS, but further study in these

cases are needed.78

Stroke and Vascular Events

TheMao et al study59 reported that 5% of a hospitalized cohort in

Wuhan had acute strokes. A more detailed report of the cerebro-

vascular disease events in this cohort revealed that 11 patients

developed acute ischemic strokes, 1 had a cerebral venous sinus

thrombosis, and 1hadan intracerebral hemorrhage.79Patientswho

developed cerebrovascular disease were significantly older; were

more likely to have severe COVID-19 disease manifestations; had

more cardiovascular risk factors; and had significantly higher

C-reactive protein and D-dimer levels, suggesting a hypercoagu-

lable state.79 A study80 in New York demonstrated that young

patients (younger than 50 years) developed large-vessel strokes in

the setting of COVID-19, suggesting all ages are vulnerable.

The pathophysiology of increased risk of cerebrovascular dis-

easeduringCOVID-19 infection is likelymultifactorial. Commonab-

normal laboratory test results in patients include elevated leuko-

cyte count, C-reactiveprotein level,D-dimer level, ferritin level, and

lactate dehydrogenase level.81 Severe cases are characterized by

elevated inflammatory markers and hypercoagulability compared

with moderate cases and with increased likelihood of stroke.59

More specific viralmechanismsmayalso increase riskof stroke.

Infection of the vascular endothelial cells and subsequent damage

to vasculature may increase the risk of ischemic and hemorrhagic

infarcts.Many infectionscan increasetheriskofstroke,oftenthrough

systemic inflammation, thrombosis, or vasculitis.82,83 Autopsy in

donors who had SARS-CoV-1 have demonstrated systemic vasculi-

tis and vasculitis of venules in the brain.23

Guillain-Barré Syndrome

and Peripheral Nerve Disorders

Guillain-Barré syndrome, also knownas acute inflammatory demy-

elinating polyneuropathy (AIDP), can develop after a gastrointesti-

nal or respiratory illness.84 This is thought to occur through a mo-

lecular mimicry mechanism in which infecting viruses likely share

epitopes similar to components of peripheral nerves, which stimu-

lates autoreactive T or B cells. The antibodies produced by the

immune system to fight the virus cross-react and bind to compo-

nents of the peripheral nervous system, causing neuronal dysfunc-

tion. Both AIDP and acute motor axonal neuropathy (AMAN) vari-

ants have been documented after SARS-CoV-1 infections.20 Cases

of AIDP, AMAN, and Bickerstaff brainstem encephalitis have been

reported in the setting of MERS-CoV.4

Reports ofGBS in patientswith COVID-19 are emerging. A case

series85 reported5 casesofGBS in Italy after COVID-19 infection. In

4cases,patientspresentedwith lower-extremityweaknessandpar-

esthesias. Patients developed symptoms amean of 5 to 10 days af-

ter onset of viral symptoms. Electromyography studies showed

2 patients had AIDP and 3 had AMAN. Additional case reports de-

scribe a patient in Iran with AMAN86 and a patient from Italy with

Miller-Fisher–variant GBS.87

A clinical case of acute transverse myelitis was reported from

Wuhan,88butMRI andCSF findingswerenot available. Thepatient

developedflaccid lower-extremityparalysiswith lossofpinpricksen-

sation and paresthesias below the T10 level and was successfully

treated with steroids and intravenous immunoglobulin.

Possible CNS Effects of Therapies
Currently in Use for COVID-19

Currently, there are numerous differentmedications being used to

treat patients with COVID-19. Here we discuss their potential neu-

rologic effects and/or relevance to neurologic diseases.

Chloroquine and Hydroxychloroquine

Chloroquine and hydroxychloroquine, initially developed as anti-

malarial drugs,work by preventing the acidification of endosomes,

which interrupts cellular functions and may prevent viral entry via

ACE2binding.89,90Hydroxychloroquine inhibitsSARS-CoV-2 invitro,

but in vivo studies are lacking, and the US Food and Drug Adminis-

trationcurrently recommendsexercisingcaution inusingthesedrugs

because of potential cardiotoxicity.91 Neurologic adverse effects

include irritability, psychosis, peripheral neuropathy, and

neuromyopathy.92,93Hydroxychloroquine iswell known toexacer-

bate symptoms inmyasthenia gravis and has long been contraindi-

cated forpatientswith thisdisease. It also lowers theseizure thresh-

old and interacts with several antiepileptic drugs, including

lacosamide and lamotrigine.94-96

Tocilizumab

Tocilizumab is amonoclonal antibody to the IL-6 receptor thatmay

attenuatecytokine release inpatientswith severe inflammatorydis-

ease. There are limited retrospective data that suggest possible

benefit.97,98 It has poor penetration into theCNS.99Neurologic ad-

verse effects include headache and dizziness, and there have been

rare reports ofmultifocal cerebral thromboticmicroangiopathy.100
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Remdesivir

Remdesivir is a viral RNA–dependent RNA polymerase inhibitor.

In vitro data have shown that it is a potent SAR-CoV-2 inhibitor, and

early clinical data have shown some benefit.101 There is little noted

about potential neurologic adverse effects, and clinical trials are

ongoing, which will provide valuable data.

Special Considerations for Patients
Under Neurological Care

Manypatientsunderneurological carehavecomplexconditionsand

comorbidities that may place them at increased risk of developing

severe COVID-19 disease. Patients older than 65 years; living in a

skilled nursing facility; or with comorbid lung disease, heart dis-

ease, liver disease, obesity (bodymass index [calculated as weight

in kilograms divided by height in meters squared] >40), diabetes,

kidneydiseaserequiringdialysis,or immunosuppressionareathigher

risk for severe disease in COVID-19.102

Multiple Sclerosis

Patients with MS taking disease-modifying therapies that have

immunosuppressive effects may be at increased risk of developing

severe COVID-19 disease. The National MS Society has released

recommendations for all patients with MS, in general, to continue

disease-modifying therapies.103 They advise steroids are safe to

treat acuteMS relapses in patients without COVID-19. If a patient is

at high risk of exposure to SARS-CoV-2 and due for additional

immunosuppressive therapy, the MS International Federation rec-

ommends that clinicians should weigh the risks and benefits of

switching the patient to interferons, glatiramer acetate, or

natalizumab.104 The National MS Society and the Consortium of

MS Centers has created a patient reporting database (covims.org)

for ongoing research.

Neuromuscular Disorders

Patients with neuromuscular disorders are at particular risk for

deterioration with COVID-19. Many neuromuscular disorders are

treated with immunosuppressive medications, which can increase

the risk of developing severe COVID-19 disease. Additionally,

patients withmyasthenia gravis or Lambert Eatonmyasthenic syn-

drome may have respiratory muscle weakness, which can put

them at further risk for severe complications in COVID-19.105 The

International Myasthenia Gravis/COVID Working Group105 recom-

mends continuing current treatments. For those receiving immu-

nosuppressive therapy, the group recommends extravigilant social

distancing and telemedicine visits.105 As discussed, hydroxychlo-

roquine exacerbates myasthenia gravis symptoms and is contrain-

dicated. For patients with chronic dysimmune neuropathies, the

risks and benefits of in-hospital infusions should be weighed with

the risk of exposure to SARS-CoV-2 and developing severe

COVID-19 disease.106

Epilepsy

Epilepsy does not increase a patient’s risk of contracting SARS-

CoV-2 or put patients at higher risk of severe disease.107 Nearly all

antiepileptic drugs are not immunosuppressive and are safe for pa-

tients with COVID-19. Viral infections and fevermay trigger seizure

in patients with epilepsy.108 Clinicians should anticipate break-

through seizures, prescribe medications for short-term manage-

ment, and provide patients with a detailed plan.108

Conclusions

To date, SARS-CoV-2 has infected millions and affected billions of

lives. The understanding of neurologic disease in patients with

COVID-19 is evolving, and clinicians should continue tomonitor pa-

tients closely for neurological disease. Early detectionof neurologi-

cal deficitsmay lead to improvedclinical outcomesandbetter treat-

mentalgorithms.Further laboratoryandclinicaldata, including tests

of CSF, brain imaging, and tests of CNS tissue, will be essential in

elucidating thepathophysiologyandpotential forCNS injury. Lastly,

longitudinal neurological assessmentsofpatients after recoverywill

be crucial in understanding the natural history of COVID-19 in the

CNS andmonitoring for potential neurologic sequelae.
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